Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
jy:results [2018/07/25 02:05] – [7.24.18 Inverse Problem] yilingjy:results [2019/09/16 09:16] yiling
Line 1: Line 1:
 +====== 2019-09-16 :Case N1: long tail antiferromagentic ======
 +
 +
 +
 ====== 2018-07-2 :The solutions to the inverse Ising problem  ====== ====== 2018-07-2 :The solutions to the inverse Ising problem  ======
  
Line 93: Line 97:
 ====== 7.19.18 Inverse Problem  ====== ====== 7.19.18 Inverse Problem  ======
  
-The mean field theory (nMF): +{{page>dynstat:mean-field}}
- +
-$\mathbf{J}^\text{nMF}=-\mathbf{C}^{-1}, (i \neq j) $, +
- +
-$h_{i}^\text{nMF}=\tanh^{-1}\left< s_{i} \right>-\sum_{j=1}^{N} J{ij}^\text{nMF}\left< s_{j} \right> $ . +
- +
- +
-The independent-pair theory (IP): +
- +
-$J_{ij}^\text{pair}=0.25*\ln\left[ \frac{(1+m_{i}+m_{j}+C_{ij}^{*}) (1-m_{i}-m_{j}+C_{ij}^{*})} {(1-m_{i}+m_{j}-C_{ij}^{*})(1+m_{i}-m_{j}-C_{ij}^{*})} \right]$, with $C_{ij}^{*}=C_{ij}+m_{i}m_{j} , (i \neq j)$ +
- +
-$h_{i}^\text{pair}=0.5*\ln\left( \frac{1+m_{i}} {1-m_{i}} \right)-\sum_{j=1}^{N} J_{ij}^\text{pair} m_{j}$. +
- +
- +
-The Thouless-Anderson-Palmer theory (TAP): +
- +
-$\mathbf{C}^{-1}+J_{ij}^\text{TAP}+2(J_{ij}^\text{TAP})^{2}m_{i}m_{j}=0 , (i \neq j)$ +
- +
-$h_{i}^\text{TAP}=h_{i}^\text{nMF}-m_{i}\sum_{i=1}^{N} (J_{ij}^\text{TAP})^{2} (1-m_{j})^{2}$. +
- +
- +
-The Sessak and Monasson theory (SM): +
- +
-$J_{ij}^\text{SM}=J_{ij}^\text{nMF}+J_{ij}^\text{pair}-\frac{C_{ij}}{(1-m_{i}^{2})(1-m_{j}^{2})-C_{ij}^{2}} , (i \neq j)$ +
- +
-$h_{i}^\text{SM}=0.5*\ln\left( \frac{1+m_{i}} {1-m_{i}} \right)-\sum_{j=1}^{N} J_{ij}^\text{SM} m_{j}$.+
  
 The coefficient of $R^{2}$ is: The coefficient of $R^{2}$ is:
Line 200: Line 179:
  
  
-====== 7.24.18 Inverse Problem  ======+======== 7.24.18 Inverse Problem  ========
  
 ^ h:n(0.0,0.07) & J:n(0.0,0.07), n=200 at T=1   ^ $\sqrt{200}$ ^ ^ h:n(0.0,0.07) & J:n(0.0,0.07), n=200 at T=1   ^ $\sqrt{200}$ ^
Line 208: Line 187:
 | h:n(0.0,0.22) & J:n(0.0,0.22), n=20  at T=1   | $\sqrt{20} $ | | h:n(0.0,0.22) & J:n(0.0,0.22), n=20  at T=1   | $\sqrt{20} $ |
  
- 
-We use the normal distribution of h and J to get the coefficients of $R^{2}$ and the RMSerror. 
  
 We set the mean equal to zero and the variance of normal distribution of h and J  We set the mean equal to zero and the variance of normal distribution of h and J 
 from $\frac{1}{\sqrt{200}}$: $\frac{1}{\sqrt{150}}$: $\frac{1}{\sqrt{100}}$:$\frac{1}{\sqrt{50}}$:$\frac{1}{\sqrt{20}} \approx 0.07 : 0.08 : 0.1 : 0.14 : 0.22 $. from $\frac{1}{\sqrt{200}}$: $\frac{1}{\sqrt{150}}$: $\frac{1}{\sqrt{100}}$:$\frac{1}{\sqrt{50}}$:$\frac{1}{\sqrt{20}} \approx 0.07 : 0.08 : 0.1 : 0.14 : 0.22 $.
 +
 +We use the normal distribution of h and J to get the coefficients of $R^{2}$ and the RMSerror at T=1.
  
  
 {{jy:RMSt1.png?400}} {{jy:RMSt1.png?400}}
 {{jy:RR.png?400}} {{jy:RR.png?400}}
 +
 +{{jy:hrms.png?400}}
 +{{jy:hRR.png?400}}
  
  
Line 321: Line 303:
 {{jy:h20_0.22t1.png}} {{jy:h20_0.22t1.png}}
 {{jy:j20_0.22t1.png}} {{jy:j20_0.22t1.png}}
 +
 +====== 7.30.18 Inverse Problem data ======
 +{{jy:j78.png}}
 +{{jy:ha78.png?450}}
 +{{jy:ja78.png?450}}
 +
 +{{jy:j781.png}}
 +{{jy:h78a1.png?450}}
 +{{jy:j78a1.png?450}}
 +