User Tools

7.19.18 Inverse Problem

The mean field theory (nMF):

$\mathbf{J}^\text{nMF}=-\mathbf{C}^{-1}, (i \neq j) $,

$h_{i}^\text{nMF}=\tanh^{-1}\left< s_{i} \right>-\sum_{j=1}^{N} J{ij}^\text{nMF}\left< s_{j} \right> $ .

The independent-pair theory (IP):

$J_{ij}^\text{pair}=0.25*\ln\left[ \frac{(1+m_{i}+m_{j}+C_{ij}^{*}) (1-m_{i}-m_{j}+C_{ij}^{*})} {(1-m_{i}+m_{j}-C_{ij}^{*})(1+m_{i}-m_{j}-C_{ij}^{*})} \right]$, with $C_{ij}^{*}=C_{ij}+m_{i}m_{j} , (i \neq j)$

$h_{i}^\text{pair}=0.5*\ln\left( \frac{1+m_{i}} {1-m_{i}} \right)-\sum_{j=1}^{N} J_{ij}^\text{pair} m_{j}$.

The Thouless-Anderson-Palmer theory (TAP):

$\mathbf{C}^{-1}+J_{ij}^\text{TAP}+2(J_{ij}^\text{TAP})^{2}m_{i}m_{j}=0 , (i \neq j)$

$h_{i}^\text{TAP}=h_{i}^\text{nMF}-m_{i}\sum_{i=1}^{N} (J_{ij}^\text{TAP})^{2} (1-m_{j})^{2}$.

The Sessak and Monasson theory (SM):

$J_{ij}^\text{SM}=J_{ij}^\text{nMF}+J_{ij}^\text{pair}-\frac{C_{ij}}{(1-m_{i}^{2})(1-m_{j}^{2})-C_{ij}^{2}} , (i \neq j)$

$h_{i}^\text{SM}=0.5*\ln\left( \frac{1+m_{i}} {1-m_{i}} \right)-\sum_{j=1}^{N} J_{ij}^\text{SM} m_{j}$.

The coefficient of $R^{2}$ is:

$R^{2}=1-\frac{\sum_{ij} \left(J_{ij}^{\text{approx}}-J_{ij}^{\text{Exact}} \right)^{2} }{\sum_{ij} \left(J_{ij}^{\text{Exact}}-J_{ij}^{\text{$\overline{Exact}$}} \right)^{2}}$ , with

The rms error is: $\sqrt{\frac{1}{N(N-1)} \sum_{i \neq j} (J_{ij}^\text{approx}-J_{ij}^\text{Exact})^{2} }$.

7.24.18 Inverse Problem

h:n(0.0,0.07) & J:n(0.0,0.07), n=200 at T=1 $\sqrt{200}$
h:n(0.0,0.08) & J:n(0.0,0.08), n=150 at T=1 $\sqrt{150}$
h:n(0.0,0.1) & J:n(0.0,0.10) , n=100 at T=1 $\sqrt{100}$
h:n(0.0,0.14) & J:n(0.0,0.14), n=50 at T=1 $\sqrt{50} $
h:n(0.0,0.22) & J:n(0.0,0.22), n=20 at T=1 $\sqrt{20} $

We set the mean equal to zero and the variance of normal distribution of h and J from $\frac{1}{\sqrt{200}}$: $\frac{1}{\sqrt{150}}$: $\frac{1}{\sqrt{100}}$:$\frac{1}{\sqrt{50}}$:$\frac{1}{\sqrt{20}} \approx 0.07 : 0.08 : 0.1 : 0.14 : 0.22 $.

We use the normal distribution of h and J to get the coefficients of $R^{2}$ and the RMSerror at T=1.

7.24.18 DATA of Inverse Problem

J:n(0.0,0.07) ,n=200 at CT=0.5 rms error $R^{2}$ h:n(0.0,0.07) rms error $R^{2}$
nMf 0.01 0.96 0.88 0.67
IP 0.11 -1.85 10.41 -43.71
SM 0.02 0.89 1.57 -0.02
TAP 0.01 0.97 1.11 0.49

J:n(0.0,0.07) ,n=200 at T=1.0 rms error $R^{2}$ h:n(0.0,0.07) rms error $R^{2}$
nMf 0.03 0.74 0.03 0.99
IP 0.04 0.66 0.11 0.99
SM 0.03 0.74 0.02 0.99
TAP 0.03 0.74 0.05 0.99

J:n(0.0,0.08) ,n=150 at CT=0.4 rms error $R^{2}$ h:n(0.0,0.08) rms error $R^{2}$
nMf 0.03 0.76 1.28 -30.39
IP 0.24 -7.94 12.13 -2810.72
SM 0.07 0.11 3.75 -268.62
TAP 0.03 0.82 1.67 -52.67

J:n(0.0,0.08) ,n=150 at T=1 rms error $R^{2}$ h:n(0.0,0.08) rms error $R^{2}$
nMf 0.04 0.74 0.03 0.97
IP 0.04 0.66 0.09 0.83
SM 0.04 0.74 0.03 0.97
TAP 0.04 0.74 0.07 0.90

J:n(0.0,0.1) ,n=100 at CT=0.5 rms error $R^{2}$ h:n(0.0,0.1) rms error $R^{2}$
nMf 0.01 0.96 0.59 0.18
IP 0.20 -2.96 6.28 -89.71
SM 0.02 0.92 0.60 0.16
TAP 0.01 0.97 0.89 -0.84

J:n(0.0,0.1) ,n=100 at T=1 rms error $R^{2}$ h:n(0.0,0.1) rms error $R^{2}$
nMf 0.05 0.75 0.04 0.99
IP 0.05 0.66 0.11 0.97
SM 0.05 0.74 0.04 0.99
TAP 0.05 0.74 0.09 0.98

J:n(0.0,0.14) ,n=50 at CT=0.2 rms error $R^{2}$ h:n(0.0,0.14) rms error $R^{2}$
nMf 0.33 -50.21 7.59 -77.94
IP 0.20 -17.71 8.27 -92.61
SM 0.27 -34.67 10.06 -137.77
TAP 0.04 -0.04 0.12 0.97

J:n(0.0,0.14) ,n=50 at T=1 rms error $R^{2}$ h:n(0.0,0.14) rms error $R^{2}$
nMf 0.06 0.75 0.05 0.99
IP 0.07 0.68 0.07 0.99
SM 0.07 0.74 0.05 0.99
TAP 0.06 0.75 0.11 0.98

J:n(0.0,0.22) ,n=20 at CT=0.5 rms error $R^{2}$ h:n(0.0,0.22) rms error $R^{2}$
nMf 0.10 0.76 0.49 0.71
IP 0.26 -0.42 0.94 -0.03
SM 0.05 0.93 0.17 0.96
TAP 0.08 0.85 0.91 0.03

J:n(0.0,0.22) ,n=20 at T=1 rms error $R^{2}$ h:n(0.0,0.22) rms error $R^{2}$
nMf 0.10 0.76 0.07 0.99
IP 0.11 0.71 0.10 0.98
SM 0.11 0.74 0.06 0.99
TAP 0.10 0.76 0.13 0.97

7.30.18 DATA of Inverse Problem

11-24-18 Gaussian in spins(-1,1) distributions

We consider the cases in the beta=1.0.

The external fields are h~n(0.1,0.1)

The coupling distributions are case 1: J~ 0.8*n(-0.2,0.1) +0.1*n(0,0.2)+0.1*n(0.5,0.5)

case2: J~ 0.5*n(-0.1,0.1) +0.3*n(0,0.3)+0.2*n(0.5,0.5)

case3: J~ 1*n(0,0.1)

case4: J~ 0.5*n(-0.2,0.1) +0.5*n(0.2,0.1)

case5: J~ 1*uniform(-0.15,0.1)

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also, you acknowledge that you have read and understand our Privacy Policy. If you do not agree, please leave the website.

More information