Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
technical:finite-entropy-estimate [2022/11/27 04:29] – [Number of states with given number of repeats] chunchungtechnical:finite-entropy-estimate [2022/11/27 05:36] (current) – [Distribution] chunchung
Line 25: Line 25:
 Second is the number of ways for assigning the orders in the sequence to the occurrences of the states, Second is the number of ways for assigning the orders in the sequence to the occurrences of the states,
 \begin{equation} \frac{N!}{\prod_n (n!)^{k_n}}. \end{equation} \begin{equation} \frac{N!}{\prod_n (n!)^{k_n}}. \end{equation}
-Overall, the likelihood of getting the combination $\{k_n| n \in \mathbb{N}_0 \}$ ($\mathbb{N}_0$ is the set of non-negative integers) is+Overall, the likelihood of getting the combination $\{k_n| n \in \mathbb{N} \}$ ($\mathbb{N}$ is the set of positive integers) is
 \begin{equation} \frac{\Gamma! N!}{\Gamma^N \prod_n k_n! (n!)^{k_n}}. \end{equation} \begin{equation} \frac{\Gamma! N!}{\Gamma^N \prod_n k_n! (n!)^{k_n}}. \end{equation}
 In the expression, the number of unobserved states is $k_0 = \Gamma - \sum_{n\in\mathbb{N}}k_n$. In the expression, the number of unobserved states is $k_0 = \Gamma - \sum_{n\in\mathbb{N}}k_n$.
Line 37: Line 37:
 & \approx \frac{\lambda^n}{n!}e^{-\lambda} & \approx \frac{\lambda^n}{n!}e^{-\lambda}
 \end{align} \end{align}
-approaching the Poisson distribution with $\lambda \equiv N/\Gamma$.+approaching the Poisson distribution with $\lambda \equiv N/\Gamma$ at the large $N$, $\Gamma$ limit.