User Tools

One-dimensional Ising model

The Hamiltonian is defined as \begin{equation} H = E(\mathbf{s}) \equiv - J\sum_i s_i s_{i+1} - h\sum_i s_i . \end{equation} where the state vector is $\mathbf{s}=(s_0,s_1,\ldots,s_{N-1})$ with $s_i = \pm 1$ for $i = 0\ldots N-1$ belonging to the least residue system modulo $N$, i.e., $\mathbb{Z}_N$, and corresponding to the periodic boundary condition.

Partition function

The partition function is defined as \begin{equation} Z \equiv \sum_{\mathbf{s}} e^{-\beta E(\mathbf{s})}, \end{equation} which can be rewritten into a matrix form: \begin{align} Z & = \prod_i \left( \sum_{s_i=\pm 1} \right) e^{\sum_i \beta s_i(J s_{i+1} + h)} \notag \\ & = \prod_i \left( \sum_{s_i=\pm 1} e^{\beta s_i(J s_{i+1} + h)} \right) \notag \\ & = \operatorname{tr} \left(T^N\right) \end{align} where \begin{equation} T = \begin{pmatrix} e^{\beta(J-h)} & e^{\beta(-J-h)} \\ e^{\beta(-J+h)} & e^{\beta(J+h)} \end{pmatrix} \end{equation} is the transfer matrix.

Characteristic polynomial

The characteristic polynomial is \begin{equation} \lambda^2 - \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right) \lambda + e^{2\beta J} - e^{-2\beta J}. \end{equation} Since the discriminant \begin{align} \mathrm{Disc}_\lambda & = \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right)^2 - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ & = e^{2\beta(J+h)} + e^{2\beta(J-h)} + 2 e^{2\beta J} - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ & = \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} \notag \\ & > 0, \end{align} the characteristic polynomial has two real roots, that is, the transfer matrix $T$ has two real eigenvalues.

Eigenvalues

The two eigenvalues are \begin{align} \lambda_\pm &= \frac{1}{2} \left[ \left( e^{\beta(J+h)}+e^{\beta(J−h)} \right) \pm \sqrt{ \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} } \right] \notag \\ &= e^{\beta J}\left[\cosh(\beta h)\pm\sqrt{\sinh^2(\beta h)+e^{-4\beta J}}\right] \end{align} and the partition function is given by \begin{equation} Z = \lambda_+^N+\lambda_-^N . \end{equation}

Simple case 1: $J = 1$, $h = 0$

The eigenvalues become \begin{equation} \lambda_\pm = e^{\beta}\pm e^{-\beta}. \end{equation} The partition function is \begin{equation} Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . \end{equation}

Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$: \begin{align} U &= \langle E\rangle \notag \\ &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\ &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\ &= - \frac{\partial}{\partial\beta}\log Z \\ &= \frac{N\left[\left(e^\beta+e^{-\beta}\right)^{N-1}\left(e^\beta-e^{-\beta}\right)+\left(e^\beta+e^{-\beta}\right)\left(e^\beta-e^{-\beta}\right)^{N-1}\right]}{\left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N} \notag \\ &= N\frac{r+r^{N-1}}{1+r^N} \end{align} where $r = \left(e^\beta-e^{-\beta}\right)/\left(e^\beta+e^{-\beta}\right)<1$ is the ratio between the two eigenvalues.

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also, you acknowledge that you have read and understand our Privacy Policy. If you do not agree, please leave the website.

More information