User Tools

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
technical:ising1d [2022/10/29 13:52] – [Partition function] chunchungtechnical:ising1d [2022/10/29 15:10] (current) – [Simple case 1: $J = 1$, $h = 0$] chunchung
Line 22: Line 22:
 ====Characteristic polynomial==== ====Characteristic polynomial====
 The characteristic polynomial is The characteristic polynomial is
-$$ \lambda^2 - \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right) \lambda + e^{2\beta J} - e^{-2\beta J}. $$ +\begin{equation} \lambda^2 - \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right) \lambda + e^{2\beta J} - e^{-2\beta J}. \end{equation} 
-Since the discriminant \begin{eqnarray*+Since the discriminant \begin{align
- & \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right)^2 - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \\ +\mathrm{Disc}_\lambda \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right)^2 - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ 
-& = e^{2\beta(J+h)} + e^{2\beta(J-h)} + 2 e^{2\beta J} - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \\ +& = e^{2\beta(J+h)} + e^{2\beta(J-h)} + 2 e^{2\beta J} - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ 
-& = \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} \\ +& = \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} \notag \\ 
-& > . +& >  0, 
-\end{eqnarray*+\end{align
-The characteristic polynomial has two real roots, that is, the transfer matrix $T$ has two real eigenvalues.+the characteristic polynomial has two real roots, that is, the transfer matrix $T$ has two real eigenvalues.
  
 ====Eigenvalues==== ====Eigenvalues====
 The two eigenvalues are The two eigenvalues are
-\begin{eqnarray*+\begin{align
-\lambda_\pm & = \frac{1}{2} \left[ \left( e^{\beta(J+h)}+e^{\beta(J−h)} \right) \pm \sqrt{ \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} } \right] \\ +\lambda_\pm &= \frac{1}{2} \left[ \left( e^{\beta(J+h)}+e^{\beta(J−h)} \right) \pm \sqrt{ \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} } \right] \notag \\ 
-& = e^{\beta J}\left[\cosh(\beta h)\pm\sqrt{\sinh^2(\beta h)+e^{-4\beta J}}\right] + &= e^{\beta J}\left[\cosh(\beta h)\pm\sqrt{\sinh^2(\beta h)+e^{-4\beta J}}\right] 
-\end{eqnarray*}+\end{align}
 and the partition function is given by and the partition function is given by
-$$ Z = \lambda_+^N+\lambda_-^N . $$+\begin{equation} Z = \lambda_+^N+\lambda_-^N . \end{equation}
 ====Simple case 1: $J = 1$, $h = 0$==== ====Simple case 1: $J = 1$, $h = 0$====
 The eigenvalues become The eigenvalues become
-$$ \lambda_\pm = e^{\beta}\pm e^{-\beta}. $$+\begin{equation} \lambda_\pm = e^{\beta}\pm e^{-\beta}. \end{equation}
 The partition function is The partition function is
-$$ Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . $$+\begin{equation} Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . \end{equation}
  
 Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$: Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$:
-\begin{eqnarray*+\begin{align
-U & = \langle E\rangle \\ +U &= \langle E\rangle \notag \\ 
-& = Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \\ +&= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\ 
-& = - Z^{-1} \frac{\partial}{\partial\beta} Z \\ +&= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\ 
-& = - \frac{\partial}{\partial\beta}\log Z +&= - \frac{\partial}{\partial\beta}\log Z \\ 
-\end{eqnarray*}+&= \frac{N\left[\left(e^\beta+e^{-\beta}\right)^{N-1}\left(e^\beta-e^{-\beta}\right)+\left(e^\beta+e^{-\beta}\right)\left(e^\beta-e^{-\beta}\right)^{N-1}\right]}{\left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N} \notag \\ 
 +&= N\frac{r+r^{N-1}}{1+r^N} 
 +\end{align} 
 +where $r = \left(e^\beta-e^{-\beta}\right)/\left(e^\beta+e^{-\beta}\right)<1$ is the ratio between the two eigenvalues.
  

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also, you acknowledge that you have read and understand our Privacy Policy. If you do not agree, please leave the website.

More information