Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
technical:ising1d [2022/10/29 13:58] – [Eigenvalues] chunchung | technical:ising1d [2022/10/29 15:10] (current) – [Simple case 1: $J = 1$, $h = 0$] chunchung | ||
---|---|---|---|
Line 24: | Line 24: | ||
\begin{equation} \lambda^2 - \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right) \lambda + e^{2\beta J} - e^{-2\beta J}. \end{equation} | \begin{equation} \lambda^2 - \left(e^{\beta (J+h)}+e^{\beta (J-h)}\right) \lambda + e^{2\beta J} - e^{-2\beta J}. \end{equation} | ||
Since the discriminant \begin{align} | Since the discriminant \begin{align} | ||
- | & | + | \mathrm{Disc}_\lambda |
- | & = e^{2\beta(J+h)} + e^{2\beta(J-h)} + 2 e^{2\beta J} - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ | + | & = e^{2\beta(J+h)} + e^{2\beta(J-h)} + 2 e^{2\beta J} - 4 \left(e^{2\beta J} - e^{-2\beta J}\right) \notag \\ |
- | & = \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} \notag \\ | + | & = \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} \notag \\ |
- | & > 0 . | + | & > 0, |
\end{align} | \end{align} | ||
- | The characteristic polynomial has two real roots, that is, the transfer matrix $T$ has two real eigenvalues. | + | the characteristic polynomial has two real roots, that is, the transfer matrix $T$ has two real eigenvalues. |
====Eigenvalues==== | ====Eigenvalues==== | ||
The two eigenvalues are | The two eigenvalues are | ||
\begin{align} | \begin{align} | ||
- | \lambda_\pm &= \frac{1}{2} \left[ \left( e^{\beta(J+h)}+e^{\beta(J−h)} \right) \pm \sqrt{ \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} } \right] \\ | + | \lambda_\pm &= \frac{1}{2} \left[ \left( e^{\beta(J+h)}+e^{\beta(J−h)} \right) \pm \sqrt{ \left(e^{\beta (J+h)}-e^{\beta (J-h)}\right)^2 + 4 e^{-2\beta J} } \right] |
& | & | ||
\end{align} | \end{align} | ||
and the partition function is given by | and the partition function is given by | ||
- | $$ Z = \lambda_+^N+\lambda_-^N . $$ | + | \begin{equation} |
====Simple case 1: $J = 1$, $h = 0$==== | ====Simple case 1: $J = 1$, $h = 0$==== | ||
The eigenvalues become | The eigenvalues become | ||
- | $$ \lambda_\pm = e^{\beta}\pm e^{-\beta}. | + | \begin{equation} |
The partition function is | The partition function is | ||
- | $$ Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . $$ | + | \begin{equation} |
Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$: | Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$: | ||
- | \begin{eqnarray*} | + | \begin{align} |
- | U & = & \langle E\rangle \\ | + | U &= \langle E\rangle |
- | & = & Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \\ | + | &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag |
- | & = & - Z^{-1} \frac{\partial}{\partial\beta} Z \\ | + | &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag |
- | & = & - \frac{\partial}{\partial\beta}\log Z | + | &= - \frac{\partial}{\partial\beta}\log Z \\ |
- | \end{eqnarray*} | + | &= \frac{N\left[\left(e^\beta+e^{-\beta}\right)^{N-1}\left(e^\beta-e^{-\beta}\right)+\left(e^\beta+e^{-\beta}\right)\left(e^\beta-e^{-\beta}\right)^{N-1}\right]}{\left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N} \notag \\ |
+ | &= N\frac{r+r^{N-1}}{1+r^N} | ||
+ | \end{align} | ||
+ | where $r = \left(e^\beta-e^{-\beta}\right)/ | ||