Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
technical:ising1d [2022/10/29 14:10] – [Simple case 1: $J = 1$, $h = 0$] chunchungtechnical:ising1d [2022/10/29 15:10] (current) – [Simple case 1: $J = 1$, $h = 0$] chunchung
Line 41: Line 41:
 ====Simple case 1: $J = 1$, $h = 0$==== ====Simple case 1: $J = 1$, $h = 0$====
 The eigenvalues become The eigenvalues become
-$$ \lambda_\pm = e^{\beta}\pm e^{-\beta}. $$+\begin{equation} \lambda_\pm = e^{\beta}\pm e^{-\beta}. \end{equation}
 The partition function is The partition function is
-$$ Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . $$+\begin{equation} Z = \left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N . \end{equation}
  
 Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$: Generally, the average energy $U = \langle E\rangle$ can be calculated from the $\beta$-derivative of $-\log Z$:
Line 50: Line 50:
 &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\ &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\
 &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\ &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\
-&= - \frac{\partial}{\partial\beta}\log Z+&= - \frac{\partial}{\partial\beta}\log Z \\ 
 +&= \frac{N\left[\left(e^\beta+e^{-\beta}\right)^{N-1}\left(e^\beta-e^{-\beta}\right)+\left(e^\beta+e^{-\beta}\right)\left(e^\beta-e^{-\beta}\right)^{N-1}\right]}{\left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N} \notag \\ 
 +&= N\frac{r+r^{N-1}}{1+r^N}
 \end{align} \end{align}
 +where $r = \left(e^\beta-e^{-\beta}\right)/\left(e^\beta+e^{-\beta}\right)<1$ is the ratio between the two eigenvalues.