User Tools

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
technical:ising1d [2022/10/29 14:11] – [Simple case 1: $J = 1$, $h = 0$] chunchungtechnical:ising1d [2022/10/29 15:10] (current) – [Simple case 1: $J = 1$, $h = 0$] chunchung
Line 50: Line 50:
 &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\ &= Z^{-1} \sum_{\mathbf{s}} E e^{-\beta E} \notag \\
 &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\ &= - Z^{-1} \frac{\partial}{\partial\beta} Z \notag \\
-&= - \frac{\partial}{\partial\beta}\log Z+&= - \frac{\partial}{\partial\beta}\log Z \\ 
 +&= \frac{N\left[\left(e^\beta+e^{-\beta}\right)^{N-1}\left(e^\beta-e^{-\beta}\right)+\left(e^\beta+e^{-\beta}\right)\left(e^\beta-e^{-\beta}\right)^{N-1}\right]}{\left(e^\beta+e^{-\beta}\right)^N+\left(e^\beta-e^{-\beta}\right)^N} \notag \\ 
 +&= N\frac{r+r^{N-1}}{1+r^N}
 \end{align} \end{align}
 +where $r = \left(e^\beta-e^{-\beta}\right)/\left(e^\beta+e^{-\beta}\right)<1$ is the ratio between the two eigenvalues.
  

This website uses cookies. By using the website, you agree with storing cookies on your computer. Also, you acknowledge that you have read and understand our Privacy Policy. If you do not agree, please leave the website.

More information